Neutron scattering study of strain behaviour of porous rocks subjected to heating and unconfined uniaxial compression

Nadimul Haque Faisala,1, Reza Sanaeea, Rao Martand Singhb, John Murraya, Abbie McLaughlinc, David Healyd, Tung-Lik Leee

a School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK
b Department of Civil and Environmental Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
c Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
d School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UE, UK,
e ISIS Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK

N.H.Faisal@rgu.ac.uk; @nh_faisal
Contents

• Problem statement
• Aims
• Methodology
• Results
• Conclusions
• Further work

Acknowledgements: The authors acknowledge the award of ENGIN-X beam time at the STFC ISIS Facility (experiment number RB1720331 (September 2017) and RB1810235 (April 2018) for the neutron diffraction measurements of geological rock samples.
Problem statement

- Stress-strain state and rock failure is important in characterisation of fracture and design of a **hydraulic fracturing job** as a means of well stimulation.

- **Predictive fracture growth monitoring** tools is critical in oil and gas, carbon sequestration, shale gas and the geothermal power industry particularly with regards to the high costs associated with field trials in extreme conditions.

- Existing information is limited by inability to experimentally measure micro-scale stress-strain concentrations (leading to failure) within the sample mass near critical potential fracture planes.

- Ability to predict these quantities for identified load conditions, is crucial to all geo-mechanical studies and flow characterisation applications.

- Fracture initiation and propagation models at micro-scale are needed to understand hydraulic behaviour of naturally fractured reservoirs and design efficient hydraulic fracturing treatments particularly in presence of localised in-situ stress concentrations.
Aims

- To better understand the micro-scale localized strain behavior of rocks and relate it to the residual stress distribution.
- Methodologies developed through this work can have a significant effect on developing future strategies in execution of hydraulic fracturing jobs and exploitation of naturally fractured reservoirs.

Fig. ASTM 4543 procedure for uniaxial compression test

Chalk (limestone) Sandstone
Methodology

Table. Uniaxial compression test matrix.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pressure</th>
<th>Temperature</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone</td>
<td>5 MPa</td>
<td>25 °C</td>
<td>d₀</td>
</tr>
<tr>
<td></td>
<td>20 MPa</td>
<td>70 °C</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>35 MPa</td>
<td>70 °C</td>
<td>d</td>
</tr>
<tr>
<td>Chalk</td>
<td>5 MPa</td>
<td>25 °C</td>
<td>d₀</td>
</tr>
<tr>
<td></td>
<td>8 MPa</td>
<td>25 °C</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>12 MPa</td>
<td>25 °C</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>12 MPa</td>
<td>50 °C</td>
<td>d</td>
</tr>
</tbody>
</table>

Gauge volume of $4 \times 4 \times 4$ mm3 (fully submerged)

Rietveld refinement (using GSAS code for ENGIN-X)

$\epsilon = (d - d_0)/d_0$, where d and d_0 are the lattice parameter for the sample under stress and unstressed sample (at 5 MPa compressive loading and 25 °C in this analysis)

Fig. (a) Uniaxial compression test (at ENGIN-X) of chalk at 5 MPa, and (b) measurement scheme.
Results

Fig. X-ray diffraction spectrum: (a) sandstone (hexagonal, SiO$_2$), and (b) chalk (rhombohedral, CaCO$_3$).

SANDSTONE: porosity: 0.154, permeability: 315 mD, Young’s modulus: 40 GPa, Poisson’s ratio: 0.14, and compressibility: 3e-10 Pa$^{-1}$

Fig. Scanning electron microscopy: (a) sandstone, and (b) chalk.
Results

Chalk (limestone)

Sandstone
Results

Fig. Neutron diffraction spectrum: (a) sandstone, and (b) chalk.

Fig. Neutron diffraction at the center of the specimens (compressive loading under 5 MPa and room temperature conditions):

(a) sandstone (hkI planes in (ii) R to L: [110], [102]/[102], [111], [200], [201]/[201], [112], [003], [202]/[202], [103]/[103], [210], [211]/[211], [113], [300], [301]/[301], [203]/[203], [104]/[104], [302]/[302], [220], [221], [213]/[213], [114], [311]/[311], [204]/[204], [222], [303]/[303]), and

(b) chalk (hkI planes in (ii) R to L: [110], [113], [202], [204], [10-8], [116], [211], [21-2], [1010], [214], [208], [119], [215], [300], [0012], [217], [2010], [218], [306]/[306], [220], [1112], [223], [311], [312], [2110], [1014], [314], [2111]).
Results

Fig. Uniaxial compression stress of 20 MPa (at 70°C) of chalk sample fracture: (a) multiple failure during compression which includes diagonal shear planes, vertical fractures, vertical splitting, shear, conical and spalling (see inbox), and (b) displacement and stress jump leading to failure.

Fig. Neutron diffraction residual strain (based on Rietveld analysis) comparison during uniaxial compression stress, showing strain variation along the radial direction from the centre of the sample: (a) sandstone, and (b) chalk.
Conclusions

- From comparison of Rietveld refinement for multiple peak of crystalline phases in both samples, it was found that the sandstone has significantly high strain bearing capability when compared with chalk, however, the overall strain profile from the central axis in the radial direction looked very similar.

- Comparison of the residual strain profile between the sandstone and chalk indicate that the average residual strain in both samples are largely tensile with some compressive residual strain in the chalk (near the outer periphery of the cylindrical sample).
Thank you

Questions, Comments, Suggestions?

Dr Nadimul Faisal
FHEA, CEng MIMechE, MIMMM
N.H.Faisal@rgu.ac.uk
01224-262438